Boundary Relations and Generalized Resolvents of Symmetric Operators in Krein Spaces
نویسندگان
چکیده
The classical Krein-Naimark formula establishes a one-to-one correspondence between the generalized resolvents of a closed symmetric operator in a Hilbert space and the class of Nevanlinna families in a parameter space. Recently it was shown by V.A. Derkach, S. Hassi, M.M. Malamud and H.S.V. de Snoo that these parameter families can be interpreted as so-called Weyl families of boundary relations, and a new proof of the Krein-Naimark formula in the Hilbert space setting was given with the help of a coupling method. The main objective of this paper is to generalize the notion of boundary relations and their Weyl families to the Krein space case and to proof some variants of the Krein-Naimark formula in an indefinite setting. Mathematics Subject Classification (2000). Primary: 47B50, 47A20, 47B25; Secondary: 46C20, 47A06.
منابع مشابه
Generalized Q-functions and Dirichlet-to-neumann Maps for Elliptic Differential Operators
The classical concept of Q-functions associated to symmetric and selfadjoint operators due to M.G. Krein and H. Langer is extended in such a way that the Dirichlet-to-Neumann map in the theory of elliptic differential equations can be interpreted as a generalized Q-function. For couplings of uniformly elliptic second order differential expression on bounded and unbounded domains explicit Krein ...
متن کاملBoundary values of resolvents of self-adjoint operators in Krein spaces
We prove in this paper resolvent estimates for the boundary values of resolvents of selfadjoint operators on a Krein space: if H is a selfadjoint operator on a Krein space H, equipped with the Krein scalar product 〈·|·〉, A is the generator of a C0−group on H and I ⊂ R is an interval such that: 1) H admits a Borel functional calculus on I, 2) the spectral projection 1lI (H) is positive in the Kr...
متن کاملOn Generalized Resolvents and Characteristic Matrices of Differential Operators
The main objects of our considerations are differential operators generated by a formally selfadjoint differential expression of an even order on the interval [0, b〉 (b ≤ ∞) with operator valued coefficients. We complement and develop the known Shtraus’ results on generalized resolvents and characteristic matrices of the minimal operator L0. Our approach is based on the concept of a decomposing...
متن کاملCommutative curvature operators over four-dimensional generalized symmetric spaces
Commutative properties of four-dimensional generalized symmetric pseudo-Riemannian manifolds were considered. Specially, in this paper, we studied Skew-Tsankov and Jacobi-Tsankov conditions in 4-dimensional pseudo-Riemannian generalized symmetric manifolds.
متن کاملComplex Symplectic Spaces and Boundary Value Problems
This paper presents a review and summary of recent research on the boundary value problems for linear ordinary and partial differential equations, with special attention to the investigations of the current authors emphasizing the applications of complex symplectic spaces. In the first part of the previous century, Stone and von Neumann formulated the theory of self-adjoint extensions of symmet...
متن کامل